Efficient Optimization Control of Permanent Magnet Synchronous Motor Using Artificial Neural Network
نویسندگان
چکیده
Traditional permanent magnet synchronous motor model is established on the basis of excluding the eddy current and hysteresis losses, it is no longer suitable for analysis and control when the motor efficiency is considered. This paper establishes a new model considering iron loss under MATLAB environment, and based on which the maximum efficiency control are analyzed. When considering iron loss, the maximum efficiency control is affected by speed and torque; Because of nonlinear and coupling, the maximum efficiency control is a very complex calculation that can not be achieved online. In this paper, neural network is used to get the direct and quadrature axis current command based on speed and torque. Simulation results show that the proposed method effectively decreases the total loss of the motor.
منابع مشابه
Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drives Using Artificial Intelligence
The main theme of this paper is to present novel controller, which is a genetic based fuzzy Logic controller, for interior permanent magnet synchronous motor drives with direct torque control. A radial basis function network has been used for online tuning of the genetic based fuzzy logic controller. Initially different operating conditions are obtained based on motor dynamics incorporating...
متن کاملOptimum Design of a Five-Phase Permanent Magnet Synchronous Motor for Underwater Vehicles by use of Particle Swarm Optimization
Permanent magnet synchronous motors are efficient motors, which have widespread applications in electric industry due to their noticeable features. One of the interesting applications of such motors is in underwater vehicles. In these cases, reaching to minimum volume and high torque of the motor are the major concern. Design optimization can enhance their merits considerably, thus reduce volum...
متن کاملOptimum Design of a Five-Phase Permanent Magnet Synchronous Motor for Underwater Vehicles by use of Particle Swarm Optimization
Permanent magnet synchronous motors are efficient motors, which have widespread applications in electric industry due to their noticeable features. One of the interesting applications of such motors is in underwater vehicles. In these cases, reaching to minimum volume and high torque of the motor are the major concern. Design optimization can enhance their merits considerably, thus reduce volum...
متن کاملDesign Optimization for Total Volume Reduction of Permanent Magnet Synchronous Generators
Permanent magnet synchronous generators (PMSGs) are novel generators which can be used in high-performance wind farms. High efficiency and flexibility in producing electricity from variable rotation make them good candidate for wind power applications. Furthermore, because these kinds of generators have no excitation winding, there is no copper loss on rotor; hence, they can operate at high pow...
متن کاملGeometry optimization of five-phase permanent magnet synchronous motors using Bees algorithm
Among all types of electrical motors, permanent magnet synchronous motors (PMSMs) are reliable and efficient motors in industrial applications. Because of their superiority over other kinds of motors, they are replacing conventional electric motors. On the other hand, high-phase PMSMs are good candidates to be used in certain industrial and military projects such as electric vehicles, spacecraf...
متن کاملNovel Unified Control Method of Induction and Permanent Magnet Synchronous Motors
Many control schemes have been proposed for induction motor and permanent magnet synchronous motor control, which are almost highly complex and non-linear. Also, a simple and efficient method for unified control of the electric moto are rarely investigated. In this paper, a novel control method based on rotor flux orientation is proposed. The novelties of proposed method are elimination of q-ax...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011